19th Ave New York, NY 95822, USA

Cellular Plasticity and Cancer Group

Plasticitat Cel·lular VHIO

Our group focuses on the interplay between stress responses, cellular plasticity and cancer. Cellular plasticity is recognized today as a critical feature of cancer cells that enable them to transit between different cellular states and promote tumor growth, disease progression after therapy, and metastasis.

We have reported that inducing dedifferentiation with the so-called Yamanaka factors can lead to the development of a variety of tumors. We have also demonstrated that tissue damage -the main driver of cancer- triggers the onset of cellular senescence which then induces dedifferentiation and the acquisition of stem cell properties in vivo.

These observations have important therapeutic implications given that chemotherapy and radiotherapy – cornerstones for the treatment of most cancers – could have the side effect of inducing stemness in non-stem cancer cells and, in turn, possibly contribute to tumor recurrence and metastasis.

María Abad
Group Leader
  • Advance insights into the interplay between therapy-induced senescence, cellular plasticity and cancer.
  • Decipher the molecular mechanisms governing the acquisition of stem cell properties during tumorigenesis and after therapy.
  • Discover and characterize novel microproteins involved in cancer cell plasticity.
  • Develop novel anti-cancer therapies based on the inhibition of cancer cell plasticity.

Figure: A) Recent findings have revealed that many genomic regions previously considered as non-coding in fact code for unannotated microproteins; some of them have been shown to be important for cancer. B) Our group has identified 5 novel microproteins with tumor suppressor activities. We have characterized them in vitro and in vivo. C) We have generated a comprehensive patient-match collection of pancreatic cancer samples, that is going to be instrumental for our research. D) We are investigating if cancer cells use unannotated secreted microproteins as intercellular messengers to promote tumor growth and metastasis. E) We are establishing co-cultures of organoids-CAFs-TILs to investigate the impact of therapy in the tumor-stroma cross-talk.

Plasticitat Cel·lular VHIO
Group Leader
María Abad
Post-Doctoral Fellow
Iñaki Merino
Research Assistants
Marta Gimenez
Lluis Palenzuela
Graduate Students
Olga Boix
Emanuela Greco
Alba Escriche
Marion Martinez
Masters Student
Sandra Blazquez
Ander Sevillano
  • Senís E, Esgleas M, Najas S, Jiménez-Sábado V, Bertani C, Giménez-Alejandre M, Escriche A, Ruiz-Orera J, Hergueta-Redondo M, Jiménez M, Giralt A, Nuciforo P, Albà MM, Peinado H, Del Toro D, Hove-Madsen L, Götz M, Abad M. TUNAR lncRNA Encodes a Microprotein that Regulates Neural Differentiation and Neurite Formation by Modulating Calcium Dynamics. Front Cell Dev Biol. 2021 Dec 31;9:747667.
  • Senís E, Mosteiro L, Grimm D, Abad M. A Versatile In Vivo System to Study Myc in Cell Reprogramming. Methods Mol Biol. 2021;2318:267-279.
  • Senís E, Mosteiro L, Grimm D, Abad M. Methods Mol Biol. 2021;2318:267-279. doi: 10.1007/978-1-0716-1476-1_14.
  • Salazar-Roa M, Trakala M, Alvarez-Fernandez M, Valdes-Mora F, Munoz J, Zapatero-Solana E, Grana O, Peters T,Abad M, Bueno M, Gomez de Cedron M, Fernandez-Piqueras J, De Martino A, Serrano M, Wang D, Clark S, Ortega S and Malumbres M. Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells. In press. Embo Journal. DOI:10.15252/embj.2019104324
  • Merino I, Greco E,Abad M(2020). The microproteome of cancer: from invisibility to relevance.Experimental Cell Research. 2020;392(1):111997. doi:10.1016/j.yexcr.2020.111997
  • Senís E, Mosteiro L, Wilkening S, Wiedtke E, Nowrouzi A, Afzal S, Fronza R, Landerer H,Abad M, Niopek D, Schmidt M, Serrano M, Grimm D.AAVvector-mediated in vivo reprogramming into pluripotency.Nat Commun. 2018 Jul 9;9(1):2651. doi: 10.1038/s41467-018-05059-x.
  • Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R, Olson EN.Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports. 2017 Mar 14;8(3):548-560.
  • Marión RM, López de Silanes I, Mosteiro L, Gamache B, Abad M, Guerra C, Megías D, Serrano M, Blasco MA.Common Telomere Changes during In Vivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports. 2017 Feb 14;8(2):460-475.
  • Gómez-Cabello D, Checa-Rodríguez C, Abad M, Serrano M, Huertas P.CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells. Stem Cell Reports. 2017 Feb 14;8(2):432-445.
  • Mosteiro L, Pantoja C, Alcázar N, Marión RM, Chondronasiou D, Rovira M, Fernández-Marcos PJ, Muñoz M, Blanco-Aparicio C, Pastor J, Gómez-López G, de Martino A, Blasco MA, Abad M and Serrano M. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016 Nov 25;354(6315). pii: aaf4445.
  • Adrados I., Larrasa J., Galarreta A., López-Antona I., Menendez C., Abad M., Gil J., Moreno-Bueno G. And Palmero I. The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene. 2016 Jul 7;35(27):3485-94
  • Vilas JM, Ferreirós A, Carneiro C, Morey L, Da Silva-Álvarez S, Fernandes T, Abad M, Di Croce L, García-Caballero T, Serrano M, Rivas C, Vidal A, Collado M. Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget. 2015 Feb 20;6(5):2992-3002.
  • Palla A.R., Piazzolla D., Abad M., Li H., Dominguez O., Schönthaler H.B., Wagner E.F. and Serrano M.Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene.2014 May 8;33(19):2513-9
  • Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, Manzanares M, Ortega S, Serrano M.Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013 Oct 17;502(7471):340-5.
  • Abad M, Moreno A, Palacios A, Narita M, Blanco F, Moreno-Bueno G, Narita M and Palmero I.The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell. 2011 Feb; 10:158-71.
  • Menéndez C, Abad M, Gómez-Cabello D, Moreno A and Palmero I. ING proteins in cellular senescence. Curr Drug Targets. 2009 May;10:406-1.
  • Abad M, Menéndez C, Fuchtabuer A, Serrano M, Fuchtbauer E-M and Palmero I.Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress.J Biol Chem. 2007 Oct 19;282:31060-7
  • Goeman F.,Thormeyer D., Abad M., Serrano M., Schmidt  O., Palmero I. and Baniahmad A. Growth inibition by the tumor suppressor p33ING1 in immortalized and primary cells: Involvement of two silencing domains and effect of Ras.Mol Cell Biol. 2005 Jan;25:422-31.
  1. Tumoral senescence induced by anti-cancer therapies constitutes a novel prognostic biomarker and a therapeutic target.
    Reference: PRYCO211023SERR.
    Spanish Association Against Cancer – AECC.
    Award Period: 9/2021-8/2026
    Co-PI: María Abad.
  2. Defining the Role of Exosome-Secreted Micropeptides in Pancreatic Cancer. number: HR18-00256.
    Health Research Grant-La Caixa Foundation.
    Award Period: 9/2019-8/2021.
    PI: Maria Abad.
  3. Identificación y Análisis del Microproteoma del Cáncer de Páncreas: Los Micropéptidos como Nuevas Dianas Terapéuticas y Biomarcadores Tumorales Fundación. XVI Convocatoria de Ayudas a la Investigación en Salud.
    Fundación Mutua Madrileña.
    PI: Maria Abad.
  4. Mining the Microproteome for New Molecular Targets in Cancer.
    number: RTI2018-102046-B-I00.Spanish Ministry of Economy and Competitiveness.
    PI: Maria Abad.

Related News

Privacy Preferences
When you visit our website, it may store information through your browser from specific services, usually in form of cookies. Here you can change your privacy preferences. Please note that blocking some types of cookies may impact your experience on our website and the services we offer.